Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dev Orig Health Dis ; 8(6): 665-673, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28689502

RESUMO

Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro. Pregnant Wistar rats were fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity, nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male offspring from both groups (aged: 19-20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro. Our results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM. Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro. These findings may contribute towards elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.


Assuntos
Células Progenitoras Endoteliais/patologia , Endotélio Vascular/patologia , Retardo do Crescimento Fetal/fisiopatologia , Estresse Oxidativo , Vasodilatação , Animais , Feminino , Masculino , Óxido Nítrico/metabolismo , Gravidez , Ratos , Ratos Wistar
2.
J Dev Orig Health Dis ; 8(2): 236-243, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28004624

RESUMO

It has been demonstrated that intrauterine growth restriction (IUGR) can program increase cardiometabolic risk. There are also evidences of the correlation between IUGR with low-grade inflammation and, thus can contribute to development of several cardiometabolic comorbidities. Therefore, we investigated the influence of IUGR on circulating mitochondrial DNA (mtDNA)/Toll-like receptor 9 (TLR9) and TNF-α expression in adult offspring. Considering that the aerobic training has anti-inflammatory actions, we also investigated whether aerobic training would improve these inflammatory factors. Pregnant Wistar rats received ad libitum or 50% of ad libitum diet throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to control, trained control, restricted and trained restricted. Aerobic training protocol was performed on a treadmill and after that, we evaluated circulating mtDNA, cardiac protein expression of TLR9, plasma and cardiac TNF-α levels, and left ventricle (LV) mass. We found that IUGR promoted an increase in the circulating mtDNA, TLR9 expression and plasma TNF-α levels. Further, our results revealed that aerobic training can restore mtDNA/TLR9 content and plasma levels of TNF-α among restricted rats. The cardiac TNF-α content and LV mass were not influenced either by IUGR or aerobic training. In conclusion, IUGR can program mtDNA/TLR9 content, which may lead to high levels of TNF-α. However, aerobic training was able to normalize these alterations. These findings evidenced that the association of IUGR and aerobic training seems to exert an important interaction effect regarding pro-inflammatory condition and, aerobic training may be used as a strategy to reduce deleterious adaptations in IUGR offspring.


Assuntos
Cardiomegalia/prevenção & controle , DNA Mitocondrial/genética , Retardo do Crescimento Fetal/fisiopatologia , Condicionamento Físico Animal/métodos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptor Toll-Like 9/metabolismo , Adaptação Fisiológica , Animais , Animais Recém-Nascidos , Cardiomegalia/etiologia , DNA Mitocondrial/sangue , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...